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IMAGE UNDERSTANDING AND [NFORMATION EXTRACTION

RESEARCH SUMMARY

This is the final report of our research in Image Understanding and
Information Extraction for the period 1 November 1975 to 3] October 1976.

The objective of this research is to achieve better understanding of image
structure and to improve the capability of image data processing systems to
extract information from imagery and to convey that information in a useful
form. The results of this research are expected to provide the basis for
technology development relative to military applications of machine extraction
of information from aircraft and satellite imagery.

Our research projects can be categorized into six rather heavily over=-
lapping areas. Image Segmentation, Image Attributes, Image Structure, Image
Recognition Techniques, Preprocessing and Applications. The relationships
and interactions among these categories is suggested by Figure 1. After the
sensor collects the image data, the preprocessor may either compress it for
storage or transmission or it may attempt to put the data into a form more
suitable for analysis. Image segmentation may simply involve locating objects
in the image or, for complex scenes, determination of characteristically dif-
ferent regions may be required. Each of the objects or regions is categorized
by the classifier which may use either classical decision-théoretic methods
or some of the more recently developed syntactic methods. In linguistic
terminology, the regions (objects) are primitives, and the classifier finds
attributes for these primitives. Finally, the structural analyzer attempts
to determine the spatial, spectral, and/or temporal relationships among the
classified primitives. In some respects, this is where real ''image under-

standing' is developed.
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Our accomplishments over the course of the year have been recorded in
our progress reports. Here we shall summarize the highlights, with emphasis
on results achieved during the final quarter of the period.
L IMAGE SEGMENTATION - We reported earlier in the year studies in which
the properties of straight edges encountered in digital imagery were character-
ized. Techniques for recognizing and measuring the distance between real-life
straight edges were investigated.
Considerable progress has been seen in segmentation of imagery by cluster-

ing methods. Yoo and Huang have pursued this approach throughout the year,

and a summary of their work, with application to images containing a tank and
two aircraft, is included in this report,

The work of Carlton and Mitchell concerning texture has now evolved from

the study of image attributes to the development of techniques for image seg-

mentation using texture and gray level features. Their results, discussed in

this report, offer the potential of a very fast method which might be imple-
; mented either digitally, optically, or with CCD devices.

IMAGE ATTRIBUTES - Through the year we reported two studies in this

category which are now more appropriately reported in other categories, an in-
i dication of the overlap and the high degree of interaction between these dif-

ferent aspects of image data analysis. One of these studies on texture was

noted above. The second, involving the use of Fourier descriptors of shape,

will be discussed under Applications.

IMAGE STRUCTURE - The thrust of our research in this area has been tc use
syntactic methods to do scene analysis. Tree grammars have been proved a use-
ful approach for characterizing the syntax or structure of images. Fu and Keng

have proposed and implemented a scheme for syntactic and semantic processing

1
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of pre-classified data. In this report they show several examples of the
application of their method for information extraction.
IMAGE RECOGNITION TECHNIQUES - A '"supervised clustering' method has

been shown by Fukunaga and Short to be useful for localizing a problem rather

than dealing with a more difficult global problem. Computationally simple
yet accurate results are obtained. Potential applications of the approach
include linear classifier design and density estimation.,

Fu and Yu and Swain and Pfaff have investigated somewhat different

approaches to the utilization of context for classification. However, this
research has not yet progressed far enough to support definite conclusions
concerning the practical utility of the approach.

PREPROCESSING - Enhancement of blurred images by complex cepstral analysis

is the goal of 0'Connor and Huang. They report here further work on improv-

ing the reconstruction of the analytic phase function of the image. They are
also interested in using this form of analysis for characterizing texture.
The '"projection method' is an approach to image restoration which has

been investigated by Berger and Huang. In this report they discuss the

merits of this method compared to ''singular value decomposition'' and consider
some aspects needing further development.
APPLICATIONS - Fourier descriptors have been demonstrated to be a useful
5 means of describing the shape of a closed planar figure, and, in particular,

Wallace and Wintz have used Fourier descriptors to encode the shapes of air-

craft. They report here very good results using this approach for aircraft

¢ recognition.,

Spatial filtering has been used by Mitchell, et, al. to reduce the
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effects of light cloud cover in satellite imagery. Results from a computer
simulation and from LANDSAT data are discussed in this report. Earlier in
the year, preliminary results were reported of applying a combination of

spatial frequency filtering and syntactic analysis for locating airports.
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IMAGE SEGMENTATION BY CLUSTERING

M. Y. Yoo and T. S. Huang
I. Introduction

Photographic images include many different kinds of information, some of
which may be relevant to a viewer's interests and others may attract some
other viewers depending upon objectives and interests. But whatever the
viewer's objectives are, the most interesting parts of images are high infor-
mation carrying contours [1~3] which usually lie between parts of images with
different characteristics to human visual perception. Therefore, the segmen-
tation of images into more fundamental textural components is the first step
in many image processing systems.

There could be two possible approaches for this purpose; one is the ''top-
to-bottom" approach. In this way we roughly segment the image into major
textures and subdivide the textures into finer pictorial components until the
results meet the desired objective. The other way is the ''bottom-up'' approach
where the segmented major textures are results grown from the ''seed textures''.
Each picture element is either merged into the texture already growing from a
"'seed'" or provides a new ''seed''. The conventional segmentations are either
one [4] or the other [2].

The new approach which we propose in this report is more flexible because
the final segment is determined by the clustering in the feature plane rather
than the original image. This approach could be either "bottom-up'" or ''top-
to-bottom' depending upon whether we first assume many clusters and group them
together or initially allow major clusters and take them apart later.

Il. The Image Segmentation Algorithm

The image segmentation algorithm which we propose consists of three major

steps: (1) feature pair extraction, (2) clustering in the feature pair joint




density plane, and (3) segmentation. The algorithm is described by the flow
chart in Fig. 1.

The feature pair extraction is the measurement of parameters giving max-
imal information about the local properties of the images. Feature extrac-
tion, however, has proved too difficult to allow a general approach., Never-

theless, the extraction of significant features in a reasonably simple form

is the most important step among the three. 3

The clustering of features in the feature pair joint density plane de-
pends highly on the features extracted, and the better the features chosen, the
easier the clustering.

The final step, segmentation, is the back transformation from clusters
in the feature plane to the segmented image.

Some detailed descriptions about the three major steps of the algorithm
were included in the previous report [5] and we will discuss new aspects here.
A. The Feature Pair Extraction

Interesting feature pairs should be chosen so as to give maximal infor-

mation about the local textural properties in & reasonably simple form to
implement on a digital computer.

Statistical and structural properties are the most commonly used. The
local sample mean, local semple standard deviation, and the local minimum and
5 maximum pairs were used for this report.

The feature pairs are calculated based on nornoverlapping 2x2 or over-
lapping 3x3 local windows. In the case of 2 x 2 nonoverlapping window the
feature pairs are calculated based on the four grey levels at (x,y), (x,y+l1),
(x+1,y), and (x+1,y+1) and the four picture points are represented by the

calculated feature pairs. The same operations are performed in the next

nonoverlapping window and we scan this window horizontally and vertically

! 8




until the whole image plane is covered. For 3 x 3 window case the pixel (x,y)

is represented by the feature pairs calculated based on the grey level at
(x,y) and the grey levels at the eight surrounding pixels.,

The calculated feature pairs can be any non-negative values and to intro-
duce the feature plane based on the extracted feature pair the features need
to be normalized and quantized in appropriate levels. The features are nor-
malized such that the maximum value of features is 64 and the feature is
uniformly quantized into 64 levels. By counting pixels which have a parti- i
cular feature pair we can calculate the joint density of each feature pair. |

Figures 2 and 5 are feature planes based on the sample mean and sample
standard deviation pair for the infrared (FLIR) image of a tank (Fig. 7(a)

and an aerial photograph of an airplane (Fig. 7(b)). Feature planes based on é

the mean-standard deviation pair and the local min- local max pair for a second g
airplane (Fig. 7(c)) are shown in Fig. 6.

Computer line print outs such as shown in Fig. 3 include numerical infor-
mation about the feature planes.
B. Clustering in the Feature Pair Joint Density Plane

There are several different clustering algorithms [6-10] but the size of
the data set which we handle is too big to be implemented in an efficient

way. Especially since we are clustering features rather than the original

picture data and ''nice'" clusters in the feature plane do not lead to the
""nice' segments in the image plane. According to our experience the most
useful clustering has been 'eyeball clustering' based on the numerical data
in the feature plane (computer print out) in conjunction with the correspond-
ing Gould Print.

Some textural components are separated from others mainly based on one

feature and others are based on the other feature and some distance measures
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in the feature plane, which many clustering algorithms are based on, do not
mean much. In most cases our experiments the Gould print outs provide rough
information about the number of clusters. The levels shown in Fig. 4 are the
result of clusterings corresponding to the feature plane in Fig. 3. All "zero"
levels in the cluster level plane denote feature points which the original
image does not have.
C. Segmentation

This is the back-transformation of clusters in the feature plane onto
the textural components in the original picture domain. Different clusters

in the feature plane correspond to different textures in the original image

domain and the number of textural components depends upon how many clusters
we allow in the feature plane. In 2x2 winow case, if the feature pair based
on the four grey levels at (x,y), c.., (x+1,y+1) is represented by level m
in the feature plane, the same level m is assigned to the four pixels
(X,¥) oees (x+1,y+1) of the original image, whereas the level n is given to
the only pixel (x,y) when the feature pair based on the grey level at (x,y)
and the grey levels at its eight neighbors has the level n for 3 x 3 window
case.

But the clusters in the feature plane usually are not perfect (actually

even if we achieve the ideal clustering we cannot avoid generating noise when

M s

some pixels in different textural components may happen to have the same
feature pair in the feature plane) and a lot of noise is produced when the

P - clusters are back-transformed onto the image domain. Therefore, some appro-

priate noise reduction processes without destroying the segmented major tex-
tures are highly desirable. The following two noise reduction processes are

applied sequentially and the results turn out to be satisfactory.
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1. Purge

As we see in part (a) of Figs. 8-13 the original segments (before
noise reduction processes are applied) which are back-transformed from
cluster levels are quite noisy. Some are due to imperfect clustering
and some are due to the fact that some of different textural parts may
have the same feature values. But most of the noise points are either
small isolated clusters or horizontally or vertically oriented narrow
strips with fairly short run length. The isolated noise will be dis=-
cussed in the next section. Whether they are noise or not, it is quite
reasonable that small narrow textural strips embedded in a large dif=-
ferent textural component are merged into the dominant texture from the
g texture segmentation point of view. The following operation will clean
up the horizontally oriented noisy strips.

Let L(x,y) be the cluster level corresponding to the pixel (x,y)

and C(s) = 11,2,3,...,5);

if L(x=m,y) = L(x-n,y)

v

and L(x,y) # L(x-m,y) for some m,n € C(s)

then L(x,y) = L(x-m,y) .
For vertically oriented strips

i if L(x,y-m) = L(x,y+n)
and L(x,y) # L(x,y-m) for some m,n € C(s)

then L(x,y) = L(x,y=m) .

The standard sizes of S are 1, 2, 3. |If there are fairly narrow parts

in the textural segments, it is recommended to choose smaller S,

g




otherwise some parts of the textures may be destroyed. For Figs. 8(b)
and 9(b) S=3 was used; S=2 was used for Figs. 10(b) and 11(b); and
S=1 for Figs. 12(b) and 13(b). Even S=2 is too big for Fig. 11(b).
Note that the engine in the left side is connected to the body of air-
plane 2,
2. |SOLDROP
Most of the isolated noisy clusters are cleaned up by the ''PURGE'
but "PURGE'" may also introduce some isolated noises. Of course, there
are some fairly large clusters of noise which ""PURGE' failed to clean.
We scan the mxn window and if all the grey levels at the boundary
of the window are the same then we replace the whole window by the grey
level at the boundary of the window. We used the size m=n=5, If the
small size of the window is chosen we cannot clean up fairly big size
of noises but if we choose a big window size, noise clusters which are
fairly close to each other may not be dropped. The compromise depends
upon the type image involved.
I1l1. Applications
A useful application for segmented textures is the boundary detection
of the interesting objects in a closed form. Closed contours are important
in relation to coding or shape description (pattern recognition). We pick
up a pixel (x,y) in a particular texture (object) and look at its eight sur-
rounding pixels. |If at least one of the eight pixels belongs to any other
texture we assume the pixel (x,y) is a boundary point. But before the boun=
dary detection operation is applied there is one more thing to be considered.
If some isolated noisy clusters were located at boundaries between dif-
ferent textural components, the noise reduction operations ''PURGE' and

""|SOLDROP'" could not handle the case, The following operation precedes

12
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the boundary detection process to achieve clean boundaries. Let P be the
level of the cluster corresponding to the interesting object in the image
involved for horizontally oriented noise

if L(x,y) =P

and L(x-m,y) # L(x,y)

L(x+n,y) # L(x,y) for some m,n € C(s)

then L(x,y) = L(x-m,y) .
For vertically oriented noise

g if L(x,y) =P
and L(x,y-m) # L(x,y)
L(x,y+n) # L(x,y) for some m,n € C(s)
then L(x,y) = L{x,y=m) .
Detected boundaries for three different images are shown in Figs. 8-13 fpart

(c)) and boundaries superimposed on the corresponding original images are

shown in part (d) of the figures.

IV. Experimental Results and Discussion

We applied the algorithm to three different images: infrared image
. A (tank) which has low resolution and two airplane images with moderate resol-
ution. The size of the images are 256 x 256. Segmented images are displayed
by a COMTAL 8000 Series System. Boundary detection based on the segmented
textures guarantees the closed contours which are essential in many appli-

cations., All detected boundaries are based on the noise reduced segments

except the airplane #2 (3x 3 window case). In this case we used the




original noisy segments because the noise reduced version messed up the small

parts near the left engine (see Fig. 11(b)). The boundaries superimposed on

the originals demonstrate how accurate the algorithm segmented the original

images.
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Figure 3 Feature Plane ( Tank )
Ver: Mean Hor: Standard deviation
2 X 2 Window used.
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Figure 4 Levels of Clusters( Tank )
Feature( Ver: Mean Hor: Stand. devi. )
2 X 2 Window used.
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(A) 2 X 2 Window used

(B) 3 X 3 Window used

Figurc 5 Feature Planc( Airplane )
Ver: Mean Hor: Standard deviation
Size: 64 X 64
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(A) Ver: Mean Hor: Standard deviation

(B) Ver: Local minimum Hor: Local maximum
Figure 6 Feature Plane( Airplane 2)

Size: 64X64
3 X 3 Window used

20




Figure 7 Original Pictures,
(a) FLIR tank
(b) Airplane 1
‘(c) Airplane 2
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(c) (d)

Figure 8 Results using Original in Fig. 7(a), a 2x2 Window, and

the
(a)
(b)
(c)
(d)

Mean and Standard Deviation Features.
Segmented image

Noise reduced segments

Boundary of interesting object
Boundary superimposed on original
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Figure 9

Same as Fig. 8 except a 3x3 Window.
(a) Segmented image

(b) Noise reduced segments

(c) Boundary of interesting object
(d) Boundary superimposed on original
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(c)

Figure 10 Results using Original in Fig. 7(b), a 2x 2 Window, and

the
(a)
(b)
(c)

(d)

Mean and Standard Deviation Features.
Segmented image

Noise reduced segments

Boundary of interesting objects
Boundary superimposed on original
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(c)
Figure 11 Same as Fig. 10 except a 3 x 3 Window
was used.
(a) Segmented image
(b) Noise reduced scgment:
(c) Boundary of interesting objects
(d) Boundary superimposed on original




Figure 12

Results using the Original in Fig. 7(c), a 3x3 Window,
and the Mean and Standard Deviation Features.

(a) Segmented image

(b) Noise reduced segments

(c) Boundary of interesting objects

(d) Boundary superimposed on original
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Figure 13 Same as Fig. 12 except the Features used
are Local Min and Local Max. }
(a) Segmented image ’
(b) Noise reduced segments

(c) Boundary of interesting objects

(d) Boundary superimposed on original
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IMAGE SEGMENTATION USING TEXTURE AND GRAY LEVEL
S.G., Carlton and 0.R. Mitchell

I. INTRODUCTION

In our last report we described the use of image texture properties to
locate region boundaries. While results were encouraging, the inability to
obtain closed boundaries was a decided drawback. In our pursuit to produce
closed boundaries, thus segmenting the image, we developed the algorithm
described in this report. The preliminary results are encouraging.

Il. THE BASIC TEXTURE MEASURE

Several approaches to the use of image texture information have recently
been developed [2,3]. However, these techniques have generally been applied
to region classification following segmentation and not to the segmentation
problem itself. In our approach to represent texture, various sizes of local
extrema in the logarithm of the image are summed within a window surrounding
each point.

A. Local Extrema

In the work reported here, local extrema were found by combining hori-
zontal and vertical one-dimensional operations. The one-dimensional cperation
scans a line of data and assigns a point to be a local maximum (minimum) of
size T if it is the largest (smallest) value occurring in the vicinity on the
line before the values drop (rise) to an amount T below (above) this maximum
(minimum) value [4]. An example is shown in Figure 1. The local extrema of
size 3 and size | are marked. This process is equivalent to detecting the
extreme fol'nowing a hysteresis smoothing operation using a smoothing of T/2.

The logarithm operation is first performed on the image prior to the
extrema catection, The use of this texture measure is a crude attempt to

simulate the human visual system's response to a texture pattern. For example,
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each maximum in Figure | would appear as a bright point to a human observer

even though one of them is below a minimum which would appear dark to an
observer, i.e., the local surround affects perceived brightness much more
than the actual gray level [5].

A sample image is shown in Figure 2. This is a 256x256 8-bit black and

white aerial scene of a military simulation area in New York State. The
local extrema measured in the logarithm version of this image are shown in

Figure 3. Three threshold values are shown as three intensities in the

picture (low, medium and high with the extra high omitted). The horizontal
and vertical extrema have been combined.

B. Turning Texture to Gray Level |

The next stage in our approach is to count the number of each size extrema |
in a window centered about each point. This results in a gray level picture
representation of a texture property. For example, using a 40x40 window and
three thresholds, the three pictures in Figs. 4, 5 and 6 were produced. Note #
that the forest region of the original has few small extrema, many medium ex-
trema, and quite a few large extrema. The original image was also averaged 1
using the same 40x40 window to produce a fourth picture, shown in Figure 7, 1

representing the average gray level.

111, SEGMENTATION
We now have four pictures (or one 4-dimensional image) to be used for
- segmentation. Each picture element is considered to be a 4-dimensional
vector. To accomplish segmentation, a starting point in each separate seg-
. ment of the image is found. This is accomplished by finding local extrema
4 in each of the four windowed pictures of Section ll, In this operation a

point must be a local extrema in both the horizontal and vertical directions

to be chosen. This prevents the location of starting points in transitional
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areas between two regions. The starting point candidates are then compared

using a four-dimensional distance measure. Each group of similar candidates,
based on a threshold criterion, are merged to produce an average vector

representing that group. The resulting average vectors form the starting

points for the segmentation. The distance measure used indicates an approxi-

mate percentage difference in each dimension:

where A is the intensity of one point in the image and B is another. This
measure is similar to gray level contrast. The constant K allows for de-
creasing the weight of a dimension in a region where the total number of
extrema is small and, therefore the percentage difference is unreliable., For
a window size of 4Ox40 we used a K=25,

Once the final set of starting points is determined, each point in the

image, regardless of its spatial location, is assigned to the closest start-

ing point using the distance measure described above. This normally results
in fairly large contiguous regions due to the nature of the earlier window-
ing operations. Results using this technique on the image and intermediate
steps presented in Figures 2 through 7 are shown in Figures 8 and 9. Figure
8 results when a large distance threshold criterion for similar starting
point vectors is used. The additional region shown in Figure 9 was obtained
by tightening this threshold. The major regions extracted from the original
image are forest and two different grassy areas.

A simple biproduct of this segmentation is the region boundaries. A
simple processing procedure on the segmentation output produces the boundary

image shown in Figure 10, These boundaries are then shown overlaid on the

original images in Figure 11,
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IV. HIERARCHICAL SEGMENTATION

In order to completely segment an image, we propose to follow the above
procedure using diminishing window sizes. The first large window size as
described in the earlier sections will find major boundaries. The diminishing
window sizes will find smaller objects which are averaged out by a large
window. However, the smaller sizes will lose the more global context obtained
by the larger ones and may miss some of the major boundaries.

To overcome this effect, each major region previously extracted will be
subdivided separately. This prevents the proliferation of starting points
and distance measurements. It also introduces spatial context into the seg-
mentation procedure.

V. TECHNIQUE PARAMETER SENSITIVITY

There are several thresholds which must be set to make this technique
operative: extrema sizes, window sizes, and distance similarity criteria.
However, if the input data is fairly homogeneous (e.g., aerial photographs
from a constant altitude) the algorithm performs well using fixed parameters.
The algorithm is theoretically invariant to illumination level changes and
magnification if the window sizes used are appropriate to the size regions
to be detected.

VI. ALGORITHM IMPLEMENTATION

The one-dimensional extrema detection algorithm is easily implemented in
a line-at-a-time digital processor. The picture is presently transposed and
the process repeated to obtain the vertical extrema. It is feasible to
implement a two-dimensional version of this algorithm using CCD transversal
filter technology which would output extrema sequentially in real time and

eliminate the time consuming transposition.
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The smoothing operations described are implementable digitally, opti-

cally, or with CCD devices. Thus the overall segmentation system could be

implemented for very fast image processing rates.

3.
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Flvgure 1 Sample gray level pattern for extrema
detection. Local extrema of size 1|
and size 3 are indicated.




Fig. 2 Original image to be
segmented, 256x256 8 bits
per point

Fig. 4 Average low level extrema =
each point represents the total

number of low level extrema within
a 40x40 window
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Fig. 3 Three levels of extrema
displayed in different intensities

Fig. 5 Average medium level extrema =
each point represents the total
number of medium level extrema within
a 4Ox40 window centered at each point.
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Fig. 6 Average high level extrema Fig. 7 Average gray level - each
each point represents the total point represents the average gray
number of high level extrema within level within a 40x40 window centered
a 40x40 window centered at each at each point
point

Fig. 8 Results of the segmentation
procedure with loose threshold
criterion on starting points




5 Fig. 9 Results of the segmentation Fig. 10 Image boundaries produced
procedure with a tight criterion from the segmentation output

on starting point generation

Fig. 11 Image boundaries outlaid on
the original image
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A MODEL OF AUTOMATIC INFORMATION EXTRACTION
FOR IMAGE UNDERSTAND ING

K. S. Fu and J. Keng

Models of information extraction are usually statistical models. Some-
times, in the implementation of these models, a man-machine interactive pro-
cess is required to improve the processed results. Todd and Baumgardner [1]
applied the statistical model which used spectral analysis for land-use clas-
sification of Marion County, Indiana (indianapolis area). Their results re-
identified the problems that statistical analysis can not be applied to a
fully satisfactory level. One of their difficulties is to distinguish high-
ways and commercial areas by computer automation. With that difficulty in
mind, we have proposed a syntax-directed method for automatic information
extraction,[2]. This method for automatic information extraction consists
of three major parts (see Fig. 1): preprocessor, syntactic analyzer, and

postprocessor.

[_PreprocessorgJ

Syntactic Analyzer

SZ

Postprocessor

Figure 1 A model for automatic information extraction.

The preprocessor extracts primitives from an input image and transforms the
image to '"language'' sentences which are the inputs for the syntactic analyzer.
This process usually involves a transformation operation, thresholding opera=

tion, averaging operation and so forth. The syntactic analyzer processes the

input image by a set of grammatical rules inferred by a grammatical inference
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algorithm. This process is to accept those patterns which can be generated
by the set of grammatical rules, and reject all others. The postprocessor
sequentially executes several semantic rules. Those objects which are related,
based on semantic information, are extracted from the image.

An example of urban development information extraction from LANDSAT
image is given to illustrate the details of the method and to demonstrate its
capability. First some special terms need to be defined.

A LANDSAT image is defined in the Euclidean space by the expression

X (i ’j’k) as

{X(i,j,k)| V<i <N,V <j<M 1 <khb)

(N = the number of rows of the image)
(M = the number of columns of the image)
(k = the spectral band number)

The Thresholding Function is a Boolean function defined as

f; = Q(i,j,k) 1 if Q(i,j,k) greater than the threshold

0o if Q(i,j,k) equal to or smaller than the
threshold

The Line Smoothing Process (LS) is defined in [2]. The Syntax-Directed Analy-

zer (SDA) is defined in [2]. The following is an implementation of this model
for the extraction of information based on urban development.

1. Preprocessing

Step | = Input LANDSAT images {X(i,j,k), 1 < i <N, 1 <j <M,
1 < k< b}

> R )T‘!n.m“.‘—;zu [ R —— e e ——




Step 2 = Transformation Process P(i,j,k*)=X(i,j,1)+Xx(i,j,2)

P(i,j,k"")=x(i,j,3) +x(i,j,4)

Step 3 = Thresholding Process fé(P(i,j,k’))

fo(P(i,5,k7))

Step 4 = Line Smoothing Process LS(fé(P(i,j,k’)))
LS(FL (P (i, 5,k"))

Syntactic Analysis

HR and RR are Highway and River recognition results,
HR(1,J,k*) = SDA(LS(f) (P(i,],k"))))
. . o, p -T . H ,r
RR(i,j,k*") = SDA(LS(f (P(i,j,k"*))))

Postprocessing

Step 1 = P(i,j,k”) = P(i,j, k") ® HR(i,j,k”)

Step 2 = P(i,j,k”) = EX(P(i,j,k*)

EX is the execution process of the semantic information.

For commercial/industrial the semantic rule is that if

the area has over 60% of it to be concrete, then this area

is called commercial/industrial area, since the commercial/

industrial area has a high density of concrete buildings

and concrete storage yard.




Step 3 = Region Growing Process
If the window {P(i+c,j+c,k) | 0 < c < 3} satisfies step 3
then P(i+c,j+c,k) is recognized as commercial/industrial

area.

Step 4 = Achieving the urban development information as highway
structures, river locations, and commercial/industrial

expansion.

This method was implemented on the IBM 360/67 timesharing computer of the
Laboratory for Applications of Remote Sensing in FORTRAN. The experiments
have been conducted on different areas. Figure 2(a) is a satellite image
(96 x 96 pixels) of a section within the northwestern part of Indianapolis
area, taken in 1972, Figure 2(b) is the topographic map of the same area.
This map was made in 1967. In Fig. 2(c) the intermediate output after the
preprocessing is given. Figure 2(d) is the commercial/industrial area recog-
nition result. This area is identified as the Lafayette Square Shopping
Center near Indianapolis. Figure 2(e) is the urban development information
extraction result. H, R, and C represent the highway, river, and commercial/
industrial pixels, respectively. The interstate highway 65 (upper right part)
goes into the city from the northwest. Highway 465 (from north to south)
surrounds the city and highway 74 (left lower part) goes into the city from
west. The Lafayette Square Shopping Center is located in the suburb and
close to the highway. This area is typical of the urban development found in
many large cities in the United States and this urban development information
was automatically extracted by the proposed method.

Comparing Fig, 2(e) with the topographic map (1967) we can observe the

growth of the commercial area clearly on the northern and eastern parts of
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shopping center. This indicates that the automatic information extraction
could be useful in topographic map making and updating.

Several large images (192 x 192 pixels) were also processed by the same

technique. Figure 3(a) is the satellite image of Lafayette, Indiana area.

Figure 3(b) is the commercial/industrial area recognition result. Figure 3(c)
is the urban development information extraction result. Figure 3(d) is a

city map of Lafayette. The commercial areas along the U.S. Highway 52 by-pass
are successfully recognized. The Wabash river dividing West Lafayette and
Lafayette is also recognized. Another example is provided in Figures L(a)-
(d). Figure 4(a) is a satellite image (192 x 192 pixels) of the northwestern
part of Indianapolis, Indiana (Fig. L(b)). Figure 4(c) is the commercial/
industrial area recognition result. Figure L(d) is the urban development
information extraction result. The Lafayette Square Shopping Center and

part of the downtown area (right lower part) are successfully extracted and

recognized.
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Figure 2(a) Satellite image of northwest part of Indianapolis,
Indiana area (96 x 96 pixels).
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45




RAUPLEURD o g
OB I kIR S an
RORPPHIIG= o g
[ Quu09:
ITErTT

e

A
P

o
e
rAnne
b Ay
R e
LT e LT
AR Aoy
O R PR
b o
G322
¥ M 2004
EEPEIERE]
ERTERE

4 Figure 2(e) Urban development information extraction result of
Fig. 2(a). |

A TR

A 16




Figure 3(a) Satellite image of Lafayette area, Indiana
(192 x 192 pixels).
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Figure 3(b) Commer%i?l/industrial area recognition result of
Fig. 3(a).
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Figure 3(c) Urban development information extraction result of
Fig. 3(a). 3
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l Figure 4(a) Satellite image of northwest quarter of
' Indianapolis, Indiana (192 x 192 pixels).
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GENERALIZED CLUSTERING FOR PROBLEM LOCALIZATION

K. Fukunaga and R, D. Short

1. Introduction

In the past, applications of clustering have been limited to situations
in which a set of data samples is given with no information as to its
underlying density or class assignment. The clustering procedures are used
to find natural divisions within the data set and thus learn something of
the structure of the underlying density or a natural classification of the
data [1]-[5].

For this paper we would like to introduce what we feel is a new
application for clustering. In our case we assume that more is known about
the sample space than just the samples themselves. Clustering is used to
divide the space into disjoint regions, minimizing a criterion which takes
into account the additional information. The resulting clusters are then
used for the processing of new data samples.

The following sections describe the techniques involved in detail.
Section 2 gives us introduction to the general approach with specific examples
which apply to piecewise linear classification and piecewise linear density
estimation. Section 3 describes in detail the algorithm for piecewise linear
classifier design. Experiments involving the two class problem are given
along with the results. In Section I we discuss the piecewise linear density
estimation problems. Again experimental results are presented. Finally,
the paper is concluded with a few remarks reflecting our impressions of the

general procedure and the supporting experimental results.
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2 Clustering for Problem Localization

For many problems in pattern recognition the researcher is seeking to
| find a global solution, that is a solution which is valid for the entire
probability space. Quite often the solution can be greatly simplified if |
the space is first partitioned and the problem is solved in each local |
region. For example, in the classifier design problem the boundary between j
two classes may be rather complex in the space as a whole, while if the
proper partitioning is chosen, linear classification in the subspaces may
give excellent results. So if the correct subdivision of the space is
found, a complex decision boundary may be reduced to a comparatively simple

boundary, such as a linear one, in each region.

Another problem which is easier to solve at a local level is density
estimation. Using Taylor's expansion of the density function
T

p(x) = plx ) + ¥p()|  (x=x) + 0(|[x=x ||?) Q)

z=X
o}

we see that locally p(x) can be estimated by a linear function

p(x) = c_ + v ox . (2)

f If the researcher does opt for this method of solution he is immediately
faced with the problem of finding the most desirable partitioning. The best
partitioning for classifier design may give poor results when used for
density estimation. The proper partitioning of the space will also depend
on the type of classifier or density estimate to be used in each region.

In order to find an optimum partitioning, we propose to use the general
method of clustering with important modifications which are appropriate for

the particular problem.
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In conventional clustering we use a criterion of the form J(X, ),

where X is the set of N, n dimensional data samples to be clustered and ¢

is a partitioning of X [6]. Thus the only information used to perform the
clustering is contained in the spatial coordinates of the data samples in

X. For this reason the term 'unsupervised clustering' is often applied.

If the data set gives a good representation of the underlying probability
density, then various characteristics of the density function may be stressed
in the clustering procedure. Such examples are the modal seeking and valley
seeking properties of various criteria as found in the literature [2], [3].
Unfortunately, for our proposed purpose, the information available from the
spatial coordinate values does not supply sufficient information for meaning-
ful clustering. Therefore, we wish to introduce clustering criteria which
take into account the specific application, we have in mind for the resulting
partitioned space.

Consider the problem of a two class classifier design. Here we wish to
divide the space into M regions. In each region we find the linear decision
boundary which best classifies the data samples in that region. Since the
ultimate goal for any classifier design is to minimize the probability of

error, we choose for our clustering criterion the following

JO, 85 ViseoosVys c],...,cM)
M
b Pr{ri} Pr{error/Vi, <, Fi} (3)
i=1

where VI x+c, = 0 is the best linear decision boundary for region Fi' For

a finite set X = {xl, x2,...,xN] and a decision rule

& X € 0
¥V, x+e¢. 20 (4)

i
( X € w,
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we can estimate (3) by

JiX. &, V],...,VN, c],...,cN)
M

1
== I E d(x,, V., c,) (5)
N i=] xjeI‘i J g 5

where
"0 if h(x) gives a correct decision
d(xj, Vis ;) = (6)
1 otherwise.

The property which distinguishes this criterion from the more traditional
forms for clustering is that we must know apriori the classifications of the
data set X. |In this sense X can be viewed as a training set which we can
use to find an appropriate subdivision of the space R" and the subsequent
linear classifiers. These results will theﬁibe used to classify unknown
samples.

Two related problems immediately arise from using the criterion as
state in (5), with a conventional iterative algorithm such as is used in
ISODATA, [2]. As an example, consider the situation shown in Figure 1. |If
we start with the initial regions shown in Figure 1(A) and the resulting
classifiers, then all points in class 1 to the right of the linear classifier
in region 2 will be placed in region 1. Similarly, the samples in class 2 to
the left of the linear classifier in region 2 will be placed in region 3. The
problem that arises here is how to separate the points in the shaded areas
into their respective regions. This raises the second problem of how to
place a new unknown sample x into Pj or Fk, or which classifier to be used
to classify x. Obviously, x does not have apriori information as to the
correct classification of x. Hence, using the new clustering criterion with

the traditional clustering procedures gives results which are of no real help.

58




N
o’

To correct these flaws we must somehow introduce a structure or a

mathematical form for our region boundaries which is independent of the
apriori class information. As such a boundary structure we restrict
our partitions to be linearly separahle and minimize (5) over this class
of partitionings. |In this way we can describe the boundaries between the
partitions by linear functions and thus assign any point in R" to a region
without the apriori knowledge of class assignment. At the same time we
have minimized, as much as possible, the number of misclassified samples
from the training set.

It is important to stress here that the choice of linear boundaries
is an engineering one, for computational considerations. The basic
philosophy is that we must some how restrict the class of partitionings
such that a new sample can be assigned to a region without apriori knowledge
of its classification. For this reason we have chosen to define a boundary
structure which can be used without such apriori knowledge. Ancother technique
is to restrict the class of partitionings such that the nearest
neightor of xj is in the same region as xj. Then the new sample will be
placed in a region according to its nearest neighbor.

Now consider the problem of density estimation. For this problem we

divide the space into M regions and find the best linear estimate of p(x)

in each region. We use the mean-square-error to measure the closeness of

our estimate. The appropriate clustering criterion s then

JOG 2, Vipeer, Vs €paeenscy)
< T 2
= £ Pr(r) E{[p(x)-V, x = ¢;[7/T;, Vi €;) (7)
i=1

where V? X + c; is the best linear estimate of p(x) in Pi for mean-square-error.

For the finite set X = {x‘....,xN} we have
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J(x, o, VI,...,VM, cl,...,cM)
M

1 T 2
== T b3 p(x,) - v - A (8)
gL xjer, |p(x; % c;l )

As in the previously mentioned classification problem, we see that
clustering X with the criterion in (8) requires apriori knowledge about
the data samples in X. In this case the required information is p(xj),
or at least an estimate of this quantity. MNow, if we wish to apply the
resulting density estimate to a new sample x, we are unable to use J for
deciding which region to place x in without the apriori value of p(x).
Taking the same approach as in the previous problem, we again restrict
the class of partitionings to those which have linearly separable partitions.
In the following sections we present in more detail the two applications
ment ioned here for this newvform of clustering. We would first like to
re-emphasize that these are specific applications qf a more general technique
of finding optimum space partitionings for the purﬁose of problem localiza-
tion. This technique should be considered in any situation in which the
designer is faced with a problem that is more easily solved locally than

globally. Ve will now give two specific examples.
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3. Piecewise Linear Classification

In this section we introduce in more detail the concept of using a
modified clustering procedure in designing a piecewise linear classifier.
Again the basic philosophy to this approach is to divide the space into H
regions and design a good linear classifier in each region. The regions are
modi fied according to the criterion in (5) and new linear classifiers are
then found for each new region. The procedure is repeated until significant
improvement in the criterion ceases.

For our experiments we have chosen to divide the training set into 3
regions. The boundary structure for these partitions is restricted to he

of the form.

! X. € F
ny B e Ay
( xj € Pz
)x.el‘l
! x: U, +a, 20 J (9
(xjer3
I Ko HEE 3
X. U3 + a3 : 0 J 2
. lx. el
J 3

where the x} Ui + a, 0 form linear houndaries between two regions. N

sample is placed into the region which receives a majority vote. In the L

% case in which each region receives one vote, the linear houndary closest
to the sample is found and the decision of that boundary is reversed. The

parameter vector U] is found by

Uy = (M) - Mz)/||M|-H2||

1
where M o I X
kW wer, 4
j Tk
with NP = number of samples in Fk.

-
-

’/’, 6 ‘

- "l
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The threshold 2 is adjusted for otpimum division of T

| and Fz. The othes
Uk's and ak's are found analogously. The boundaries of (9) with Ui's of
(10) are perpendicular to the mean-difference vectors between classes, which
were used in ISODATA [2]. The only difference here is the introduction

of thresholds ai's. Our experimental results show that the proper selection

of ai's is very important to obtain reasonahle region boundaries particularly

T N T g T e N [ e T N Y -
'

when the numbers of samples in each regions are significantly different.
Also, it is recommehded that the data be transformed so as to malke the
g covariance matrix of the mixture distribution an identity matrix. This
normalization of the mixture covariance makes the clustering results
coordinate-independent in general [7].

For the two class problem which is considered in the experiments, ve
find a linear classifier in each region. For this we choose the optimum

selution to Fisher's criterion which is

v, = (z: + zf)" (M: . M"i’) (i)

R S P | TR ARy e

where Hﬁ is the sample class k mean in reqion r'i and x? is the sample clas< kL

covariance in region Fi. The threshold <, is adjusted for optimum classifica-~

tion. We note that in both the case of the linear boundaries and the case

of the linear classifiers we have avoided any iterative techniques which woul‘l

be required for finding the optimum parameters. Ve feel that the computa-

P tional savings of avoiding a two layered iterative algorithm well out weiahs
the loss in performance. From the experimental results, vwe have concluded
that this decisicn is justifiable.

o The aeneral algorithm used in our experiments is as follows.

1) Choose an initial clustering of X, € (0).
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2) Find the U"s from (10) and the a"s as discussed above
for E(K); the resulting partitioning Is E(K).
3) Calculate the V.'s from (11) and the c,'s as described
above.
L) Reassign all x; € X according to the rule:
a) Leave xJ in its present region If the linear
classifier corresponding to that region correctly
classifies xj.

b) Otherwise place x, in the region corresponding to the

J
classifier that most strongly favors the correct class.
For example, in the two class problem, if the Vi's are
normalized, we place xj in region I‘i corresponding to
the maximum (minimum) of
T
xj Vi + Cp o

for X; in class 1 (class 2). The decision rule in r is

J

given by
“ x. € class 1
L8 >olj
Bp Mtk e (
{ x: € class 2

The new paritioning is denoted § (K+1).
5) If no xj is reassigned, stop, otherwise increment K by 1 and

5 return to step 2.

Clearly, with slight modifications this algorithm could be applied t.0
the multiclass problem, using a multiclass linear classifier in each reqion,
For example, if a majority vote type classifier is used in each region we
would reassign xj to the region which gives the correct class the most

votes, if it were misclassified in its present region.
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Experimental Results

Experiment 1

For this experiment 80 two dimensional samples are used to train a tuo
class classifier with 40 samples in each class. Class 1 is normally di: -
tributed with zero mean and an identity covariance. Class 2 is equally dividcd
between a normal distribution with a mean of (2.5,0) and a normal distriliu-
tion with a mean of (-2.5,0), both having an identity covariance. Thus .
class 2 lies on both sides of class 1, 3
As in all experiments the data is first transformed in order to whiten

the covariance of the mixture distribution, and all illustrations are

shown in the transformed space. The initial regions and the final regions
and corresponding classifiers are shown in Figures 2(A) and (B) respectively.
The final results were found after 7 iterations. The classification results
as applied tc 320 test samples (independent of design samples) was 16.5 per

cent misclassified. This compares to a theoretical Bayes error of 15 percent.

Experiment 2

Next we consider another two dimensional two class classification prohlen
with class distributions as shown in Figure 3. Again 40 samples are used
from each class for training of the classifier. After 6 iterations the
original regions shown in Figure 3{A) were changed to the final regions aud
classifiers in Figure 3(B). It is interesting to note here the role thit

the region boundaries play in the complete decision boundary.

Fxperivent 3
For the final classifier design experiment we have chosen an eiqi:t
dimensional two class problem. The training set consists of 320 sampl: -.

160 from each class. Class 1 is normally distributed with mean and
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covariance as identified with Standard Data 1 in [6]. The data in class 2
is equally distributed hetween normal distributions described by Standard
Pata 2 and Standard Data 3 in [6]. The values of the criterion in (5) are
plotted in Fiqure 4. These results compare to an error of approximately

L,6 percent if the optimal linear boundary between class 1 and Standard

Data 2 and the optinal linear boundary between class 1 and Standard Data

3 ar: used as the decision boundary [6].
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4., Density Estimation

We would nexi like to discuss further the application of our clustering
procedure to density estimation. Here we have chosen to divide the space
into three regions and to find the best linear estimate of p(x) in each

region. The criterion for a given training set X is again

J(xl""’xN’ v‘,...,v3, cl....,c3)

3
1 T 2
== 3 I lp(x,) = x; V. = ¢, |° . (12)
N i=1 xjer j g :

-

This criterion implies that we must know p(xj) for all samples in the training
set. Therefore unless we know the functional form of p(x) we must use an
estimate. Examples of such an estimate are the k-nearest neighbor and the
Parzen estimate. For our experiment we use the n-dimensional Parzen

estimate [8]

N
Blx.) =+ & (1/h)" k((x; = x;)/h) (13)
j N i=] j i
where the kernel function is
- %-xT X

|
k(x) = ?;;;;7§-e ()

The selection of h is always crucial in the Parzen density estimate. However,

the optimization of h is not our main concern in this paper, we selected
1

v
N4 for n dimensional data with N samples [4], [8], [9].

h =N
As in the classifier design we restrict the regions to be separable
by the linear boundaries described in (9) and (10) of the previous selection.

The linear density estimates, xT Vi +c;, are optimized in each region to

winimize che criterion

ke g [Plr) = %y ¥, - e (i5)
i J g i
xjt»:l"i

=
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Taking the gradient of Ji with respect tc V., and the partial of Ji with

respect to <, gives

2 ~ T
Vv, J, = - =~ r (p(x.,) = x, V., =¢c,) x (16)
9J
i 2 ~ T
and 3;?'- = ﬁ? xJ:Pi (P(XJ) - xj Vi - ci) . (17)

Setting (16) and (17) to zero and solving for v, and < gives

1 S -
e
and ¢, '%'T L Bly) -V, (19)
g xjeT‘

vihere Mi is the sample mean in I‘i and

By = X x; xI = MM (20)
i x,el, 3
e
:~§: Equations (18) and (19) give the optimum linear estimate of the density

function 6(xj) in each region.

! The following algorithm gives the general scheme used for the piecewise
{ linear density estimation.
1) Choose an initial clustering 5(0)
2) Find the Ui's using (10) and the ai's as mentioned in the
g previous section for 5(K); the resulting partitioning is

$(K).
3) Calculate the Vi's and the ci's as in (18) and (19).

I) Reassiqgn X; according to the minimum

- T
|p(xj) "X e ciI

e
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to P' for each xj in X. The resulting partitioning is
g (K+1).
5) If no xj's reassigned, stop, otherwise increment K by
1 and return to step 2.
Notice that the only difference between this algorithm and the one in the
previous section is in steps 3 and 4. These steps are dependent upon the

particular application of the clustering and the criterion one chooses.

Experimental Results

Experiment 4

The above procedure was used to estimate a two dimensional data set
with 160 samples. The data samples were generated with a normal distribution
with zero mean and an identity covariance. The initial and final regions
are shown in Figure 5. A plot of the criterion J is shown in Figure 6

which shows a convergence after 6 iterations.

Experiment 5

One hundred sixty were generated from an 8-dimensional normal distribu-
tion with zero mean and identity covariance. Convergence of the algorithm

was similar to the two dimensional case.




¢

5. Conclusions

From the experimental results we feel optimistic that the general
approach which we call supervised clustering is indeed a viable method
of region selection in problems such as piecewise linear classification and
density estimation. This method may prove fruitful in a wide class of
problems in which one needs to divide the probability space into local
regions and thus attack the problem at a localized level. Another advantage
to this technique is its easy adaptability to a tree structure for region
division. That is, upon dividing the space into M regions we can apply
this algorithm to each resulting region and thus further subdivide these
regions into M subregions. This process can be repeated forming a tree
structure with the desired number of levels. However it was found in
our experiments that satisfactory results were obtained by using only a
single division into three regions. Three regions wcre_chosen primarily
due to computational considerations.

It is particularly worth noting again that in the classifier design
we were able to use relatively simple techniqués for region boundary and
linear classifier design. Very promising results were found using these
techniques which enabled us to preserve a single level iteration algorithm.
This results in considerable computational savings. For these reasons we
feel that the results indicate that this method is competitive with other

known approaches to classifier design.
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Figure 1: An example of clustering using criterion (3)
with a conventionzl clustering algorithm.
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Flaure 5B: Initial and final partitioning’ of space for

density estimation in experiment 4.
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RANDOM FIELD APPROACH FOR STATISTICAL CLASSIFICATION
USING CONTEXTUAL INFORMATION

Ke S Fu and T. S. Yu

In this report we shall present some contextual classification results
using a random field model. First, let us recapitulate the classification
scheme. For the time being we will concentrate on the nearest neighbor model

as shown in Fig. 1. Every internal cell K has four nearest neighbors.

Figure 1 Cell K and its neighbors

These five cells (sites) form a multivariate random vector x which has a
normal distribution P(x) [1] as

-1/2n

P(x) = (216%) (8] /2

exp{-1/2 g (i-g)TB (x-u)} (1)

where n=5 and B has the following structure

b e Ry By TRee
-PIZ 1 0 0 0
B= -813 0 1 0 0
-8, O 0 | 0

-85 O 0 0 1 j

N

and 02 is the conditional variance of the conditional distribution:
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9 2,~1/2 NG g 2
P(xk/xkl,...,xkh) (2n0%) exp[-1/20 {xk u ze“. (xj uj)} ]

(2)

Uy is the mean value of random variable X The proposed classification pro-

cedure is to choose the joint class B, = (ek,ek‘,ekz,eku,ak ) which minimizes

5
the risk

R(L,8, )= 2 L(B, ,8 )P(x/6)G(E ) (3)

z
24
where G is the a priori distribution for.gk . The classification of cell K
is then a result of its own appearance as well as the appearance of its
neighbors. Context is then used in classifying every cell. This algorithm
is used to classify one set of satellite (LANDSAT) data.

The multispectral LANDSAT data used was provided by LARS (Lab for Appli-
cation of Remote Sensing). The data covers an area of Lafayette, IN under
run No. 72053609. The ground truth information was obtained by professional
analysts. It was found that there are seventeen subclasses in the data set.
Training of these classes were performed using approximately 3500 samples.
A different area of size 128 x 128 was used to test the performance of the
classification algorithm. The area covers lines (200,327), columns (120,247).
If there is one-channel measurement associated with each cell, the random
field model gives 50% classification accuracy while the corresponding simple
(no context) decision gives 30% classification accuracy.

In order to make use of the multispectral properties of LANDSAT data,
we employed a rather heuristic extension of the univariate case. The add-
itional variates were treated as notational sites and the univariate model

can be applied. The multivariate site-variable case is being investigated.
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The two-channel classification gives 50% classification accuracy while

the corresponding two-band simple classification gives 51% accuracy. The

context algorithm is found to take five times longer in computer time than

the simple classification algorithm. Results of classification together

with ground truth are shown in Fig. 2. The results demonstrated the feasi-

bility of using contextual information in classification. Multivariate site-

variable case is of particular interest and is currently being investigated.
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MODELS FOR CLASSIFICATION USING SPATIAL
AND TEMPORAL CONTEXT
P.H. Swain and W, Pfaff

Classifiers operating on multispectral imagery generally observe and
classify a single image point at a time. Recent studies, however, confirm
what our intuition and any good photointerpreter could tell us, that there
is a great deal of information in the context in which an image point is
found which can be helpful in identifying the point. Statements like,
"Trucks are more likely to occur on roadways than in agricultural fields,"
describe the kind of context information which can help us discriminate trucks
from tractors even though the resolution of the imagery is not adequate for
us to discern the shape of the vehicle. Similarly: 'A pattern of strips of
asphalt and/or concrete in a non-urban area, limited in length and not con-
necting urban areas, is more likely an airport than a network of roadways.'
Thus, if we consider an object together with its context, we may be able to
"understand'' a great deal more about the object than we can when we consider
the object apart from its context.

Utilization of context - the information contained in the spatial de-
pendencles-aﬁong image points = is therefore an important objective on the
way to achieving '"image understanding.' Syntactic characterization of scene
structure, described elsewhere in this report, is one way of utilizing con-
text. Another is to think of a scene as being generated by a multi-dimensional
random process characterizable in terms of its statistical transition
properties.

A relatively simple approach to the statistical treatment of context

in remote sensing imagery was suggested by Welch and Salter [1]. However,
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their study utilizes simulated digital data produced by manual interpretation
of aerial photography. During the past year, Fu and Yu have applied the
Welch and Salter approach to multispectral scanner data collected by aircraft
and spacecraft., The results of these experiments confirmed that contextual
information can be extracted from multispectral imagery by this approach and
that such information aids in achieving accurate classification.

But the Welch and Salter method suffers from a number of practical dif-
ficulties. The first is the severe restrictions placed on the form of the
spatial context that can validly be incorporated because of the simplifying
assumptions which are necessary. Essentially, only the data associated with

the four ''!nearest neighbors''

L

Fig. 1. Image point to be classified (X) and
its four nearest neighbors,

of a point to be classified (Figure 1) can be accounted for. The second dif-
ficulty is the added computational load required to implement the method and
apply it to every image point.

Two new models which we have formulated for the two-dimensional random
process, based on a significantly different way of thinking about the spatial
dependencies, hold promise for alleviating both of these problems. Arbitrary
contextual configurations, such as those illustrated in Fig. 2, can be dealt
with by means of the new models, and the required computations are somewhat
simpler. Furthermore, the statistical dependencies which must be learned

from a typical scene in order to classify a new scene are less complex
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and more readily determined.

To further reduce the computational load without compromising the quality
of the analysis results, we are considering the use of sequential and adaptive
processes which will determine regions of an image for which context analysis

is potentially useful. When there is no potential benefit to be gained from

Figure 2. Alternative contextual configurations
incorporating context into the classification process, simpler decision pro~
cesses can be applied, reducing the computations accordingly.

During this project year, we have developed software which will enable

us to statistically characterize the contextual content of a LANDSAT image.

In addition, we have formulated and begun implementation of a Bayesian
classifier model which is particularly attractive for contextual classifi-
cation., This classifier is also useful for analyzing time-sequential image

data and its use for that purpose is soon to be demonstrated.
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PHASE UNWRAPP ING

B. 0'Connor and T.S. Huang

I. Introduction

In several applications of one and two-dimensional signal processing, the
analytic phase function must be computed. This function is called the contin-
uous or unwrapped phase. One well known use of the unwrapped phase is to com-
pute the complex cepstrum of a signal. Cepstral techniques have been used on
one-dimensional signals in such areas as seismic, speech, and hydropﬁonic
analysis [1]. More recently, these techniques have been extened to two-
dimensions with applications to stability [2,3].

Other non-cepstral applications of the unwrapped phase include blind de-
convolution and polynomial root distribution determination. Blind deconvolu-
tion refers to methods which estimate a blurring function given only the
blurred picture. Successful work has been reported for [4,5,6,7] estimating
the magnitude of the blurring function from detailed blurred images. However,
the determination of the phase has not been adequately solved yet. Pattern
recognition techniques have been applied with some success when the blurring
function is one from a class of several [8]. A more general method, which
is a modification of a technique applied to multi-frame processing, has been
a disappointment judging from preliminary results [10,11]. Phase unwrapping
has been used to reconstruct the phase of the one-dimensional blurring func-
tion from a blurred image [7], again with the disappointing results. However,
the results were obtained from an unsatisfactory phase unwrapping algorithm,
The employed algorithm failed in many cases to unwrap the phase correctly.
Hence, the conclusions reached were premature. Recently, a new phase

unwrapping algorithm has been proposed [12]. This method combines the
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information in both the phase derivative and the principal value of the phase
into an adaptive numerical integration scheme, This algorithm has the po-
tential of being very accurate. However, it did not obtain the reliability
claimed in the paper. Below we will discuss among other things our improve-
ments to this algorithm. We have found a way to increase both the speed and
the accuracy of this phase unwrapping method. Our modified algorithm can now
be applied to the phase reconstruction problem to obtain accurate results.

We plan in the future to attack the blind deconvolution problem in both one
and two dimensions and hopefully more reliable conclusions will result. A

previous report [3] discussed the two-dimensional phase unwrapping problem.

Il. Phase Unwrapping (One Dimension)

Let x(n) be a finite real sequence of numbers n > 0 with Fourier trans-
form X(ejw), the unwrapped phase of X is arg[X(ejw)]. This must be a contin-
uous and odd function of w. Generally, only ARG[X(ejm)] (the principal value)
can be evaluated from X(eJm) via the inverse tangent. That is, only the
principal value of the phase is known and this must be unwrapped to obtain
arg[x(ejw)]° I f X(ejw) were known for all w, this would be a trivial task.
All that would be necessary is to patch together pieces of ARG[X(ejw)] to
obtain a continuous function with boundary condition arg[X(ejo)] = 0. How-
ever, the FFT (Fast Fourier Transform) is employed in the calculation of
X(ejw) and hence, X(ejm) is known only on a discrete set of points. Thus,
the discontinuities in ARG[X(ejw)] are difficult to detect. One method of
phase unwrapping examines the samples of the principal value of the phase
and attempts to detect large jumps between adjacent samples. The rationale
is that these jumps depict the discontinuities of ARG[X(ejw)]. However,
practical problems, such as what can be considered a large jump and a proper

sampling rate, plague this technique. Generally, for this method to have any
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chance of success at all, it is necessary to sample the phase at a very high
rate. However, a high sampling rate does not guarantee success and it re-
sults in excessive calculation time. As an example, Filip [7] used a 2048
length FFT to unwrap the phase of a sequence of length 128 with the jump
threshold set at 1.06pi. We tried his algorithm on 100 sequences of length
128 obtained from a picture of various texture patterns and found that it
failed 29% of the time.

The unwrapped phase can be unambiguously defined in terms of its deri-
vative arg‘[X(ejw)] = ﬁ%-arglx(ejm)] by arg[X(ejw)] = Ig arg'[X(ejs)] ds,
afg[x(ejo)] = 0. Computation of the phase derivative is straightforward [1,2]
XR(ejw)X;(ejw) - Xl(ejw)xa(ejw)

x(e39) 2

arg”[x(ed*)] =

Note that X‘(ejw) = =jFT{nx(n)}. Hence, the integration of the phase deriva-
tive is another technique for phase unwrapping. The advantage of this method
over the previous one is that the detection of discontinuities is no longer
necessary. However, this method suffers from problems due to numerical inte-
gration. Again, high sampling rates are necessary to produce acceptable re-
sults. Furthermore, the phase error increases as . increases as a result of
accumulating integration errors., Higher order integration formulas do not
offer a solution to this problem because they introduce new problems [13].

A logical alternative is to combine the information in the principal
value with that of the phase derivative. Tribolet [12] successfully accbm-
plished this by employing an adaptive numerical integration scheme. He used
trapezoidal integration to acquire a number which is added to the previous
value of the unwrapped phase. The principal value of this estimate is com=

pared to the known principal value. If these numbers are close enough, the
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estimate is clamped to the appropriate value of the unwrapped phase which has

the proper principal value. In other words [12], assuming the unwrapped phase

at w is known, we define an estimate of the unwrapped phase at wp > Wy by:

‘*’l

jw jw
arg[x(e ‘)|w ] = arg[x(e )1+ 200 argeix(e 0] + arg”lx(e 1)

Clearly this estimate improves as the step interval Aw = wy=wg becomes smaller.
The basic idea of Tribolet's algorithm is to adapt the step size Aw until the
result of numerical integration matches the |nformat|on given by the principal
value of the phase. Define E(wo,w]) ARG[X(e l)]w ] - ARG[X (e w])]. The
step size which leads to a consistent phase estimate at o) is one in which
IE(wo,wl)| < E << m. When the above condition is satisfied the unwrapped
phase is defined by:
juw jw
arglx(e N1 = arglx(e’ Nluy) - Elugo,]
jw
so it wraps to ARG[X(e ]<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>